High-dimensional Expanders from Kac–Moody–Steinberg Groups

Inga Valentiner-Branth (with Laura Grave de Peralta) inga.valentinerbranth@ugent.be

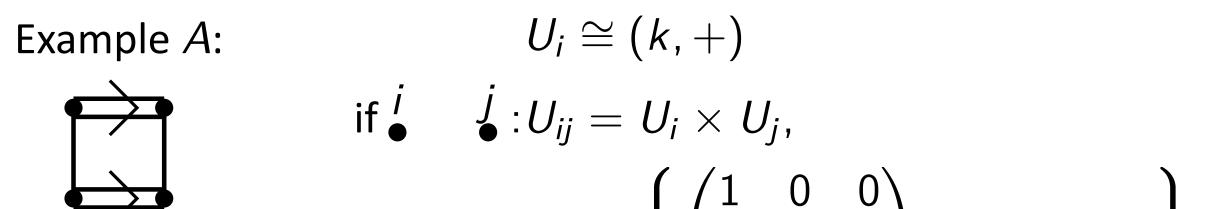
Motivation

- Expander graphs: sparse yet highly connected
- High-dimensional expanders: generalization to simplicial complexes
- Several non-equivalent ideas: (local) spectral, cosystolic, coboundary, geometric, topological high-dimensional expansion
- Applications for LDPC error-correcting codes (spectral), property testing (cosystolic), non-sofic groups (cosystolic with coefficients in symmetric

Kac–Moody–Steinberg groups

Let k be a (finite) field, A Dynkin diagram with nodes I that is 2-spherical.

Set, for all $i, j \in I, i \neq j$



groups).

Previous constructions: Lubotzky-Samuels-Vishne (2005): Ramanujan complexes; Kaufman-Oppenheim (2018), O'Donnel-Pratt (2022): Coset complexes over (certain) Chevalley groups giving rise to local spectral expanders.

High-dimensional expanders

Let G = (V, E) be a finite, simple, d-regular graph. Random walk matrix given by $M \in Mat_{|V|}(\mathbb{R})$:

$$M_{v,w} = \begin{cases} rac{1}{d} & ext{if}(v,w) \in E \\ 0 & ext{else.} \end{cases}$$

Eigenvalues of $M: \lambda_1 = 1 \ge \lambda_2 \ge \cdots \ge \lambda_{|V|}$. **Definition 1** G is called λ -expander if

 $\lambda_2(M) \geq \lambda$.

Let X be a finite *simplicial complex* which is

■ *d*-dimensional, i.e.
$$\max_{\sigma \in X} (|\sigma| - 1) = \max_{\sigma \in X} \dim(\sigma) = d$$

$$if \stackrel{i}{\longleftarrow} : U_{ij} = \left\{ \begin{pmatrix} a & 1 & 0 \\ b & c & 1 \end{pmatrix} \mid a, b, c \in k \right\}$$
$$if \stackrel{i}{\longleftarrow} : U_{ij} = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ c & 1 & 0 & 0 \\ ac + d & a & 1 & 0 \\ b & d & -c & 1 \end{pmatrix} \mid x, z, a, c \in k \right\} \leq \operatorname{Sp}_{4}(k)$$
Embedding $f_{i,j} : U_{i} \to U_{i,j}$ given by $U_{i} \leftrightarrow a, U_{j} \leftrightarrow c$.

KMS group of type A over k:

$$\mathcal{U}_{\mathcal{A}}(k) = \left. lpha_{i,j \in I} \right| \left| U_i \stackrel{f_{i,j}}{\longrightarrow} U_{ij}; i \neq j \in I
ight)$$

 $= \left\langle U_i, U_{ij}; i, j \in I \mid \forall i \neq j \in I, \forall a \in U_i : a = f_{i,j}(a) \right\rangle$

- A not spherical $\Rightarrow U_A(k)$ infinite and $U_{ij} \hookrightarrow U_A(k)$
- For $J \subset I$ let $U_J = \langle U_j | j \in J \rangle \leq \mathcal{U}_A(k)$ If sub-diagram induced by J is spherical, U_{J} is finite
- in many cases $\mathcal{U}_A(k)$ is residually finite
- if A is affine, $\mathcal{U}_A(k)$ has quotient inside Chevalley groups over k[t]/(f)like in the example.

pure, i.e. $\forall \tau \in X \exists \sigma \in X(d) : \tau \subseteq \sigma$.

We use the following notation

- $X(i) = \{ \sigma \in X \mid \dim(\sigma) = i \} \text{ for } -1 \leq i \leq d \text{, note that } X(-1) = i \}$ $\{\emptyset\}.$
- The link of $\tau \in X$: $lk_X(\tau) = \{ \sigma \in X \mid \tau \cap \sigma = \emptyset, \tau \cup \sigma \in X \}$. Note $\dim(\operatorname{lk}_X(\tau)) = d - \dim(\tau) - 1.$

Definition 2 (Oppenheim 2018) Given a pure, finite, d-dimensional complex X such that, for some $\lambda < \frac{1}{d}$,

- the 1-skeleton of X is connected,
- for every $\tau \in X$ with dim $(\tau) \leq d 2$ we have that the 1-skeleton of $lk_X(\tau)$ is connected,
- $\forall \tau \in X(d-2) : \lambda_2(\mathsf{lk}_X(\tau)) \geq \varepsilon,$

then X is a λ -local spectral expander.

The complete simplex is a local spectral expander, but what we want:

Definition 3 Let $\varepsilon > 0, c, d \in \mathbb{N}$ be fixed. A family $(X_s)_{s \in \mathbb{N}}$ of finite, pure, d-dimensional complexes is a family of high-dimensional expanders if

Main theorem

- $\mathcal{U}_A(k)$ a KMS-group such that
 - k is a finite field, $|k| \ge 4$,
 - A is a Dynkin diagram on nodes I such that any sub-diagram of size |I| - 1 is spherical.
- G a finite group, $\phi : \mathcal{U}_A(k) \rightarrow G$ such that
 - $-\phi|_{U_I}$ is injective for all $J \subsetneq I$, $-\phi(U_J)\cap\phi(U_K)=\phi(U_J\cap U_K)$ for all $J,K\subseteq I$.

Then

$$\mathcal{CC}\left(G,\left(\phi(U_{I\setminus\{i\}})\right)_{i\in I}\right)$$

is a γ -local spectral expander, where γ is independent of ϕ , G.

Example construction

- for all $s \in \mathbb{N}$: X_s is an ε -spectral/coboundary/cosystolic expander, for all $s \in \mathbb{N}$, $v \in X_s(0)$: deg $(v) \leq c$,
- $|X_s(0)| \to \infty \text{ for } s \to \infty.$

Coset complexes

Definition 4 Let G be a finite group and H_0, \ldots, H_d subgroups of G. Then the coset complex $CC(G, (H_i)_{i=0}^d)$ is a d-dimensional simplical complex with

• vertices $\bigsqcup_{i=0}^{d} G/H_i$, ■ maximal faces $\{gH_0, ..., gH_d\}$ for $g \in G$.

In particular $gH_i \sim hH_i$ if $i \neq j$ and $gH_i \cap hH_i \neq \emptyset$.

- Fix a finite field k, $|k| \ge 4$, char(k) > 2.
- Consider the following subgroups inside $SL_3(k[t])$:

$$H_0 = \begin{pmatrix} 1 & k & k \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix}, H_1 = \begin{pmatrix} 1 & 0 & 0 \\ kt & 1 & k \\ kt & 0 & 1 \end{pmatrix}, H_2 = \begin{pmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ kt & kt & 1 \end{pmatrix}$$

Irreducible polynomials $f_m \in k[t]$, $m \in \mathbb{N}$, such that $\deg(f_m) \to \infty$. $\pi_m : SL_3(k[t]) \to SL_3(k[t]/(f_m))$ the entry-wise projection. Set $G_m = SL_3(k[t]/(f_m)), H_i^m = \pi_m(H_i), i = 0, 1, 2$

Then

 $(\mathcal{CC}(G_m, (H_0^m, H_1^m, H_2^m)))_{m \in \mathbb{N}})$

is a family of bounded degree spectral expanders.